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Abstract

The contact problem for the impression of spherical indenter into a non-homogeneous (both layered and func-

tionally graded) elastic half-space is considered. Analytical methods for solving this problem have been developed. It is

assumed that the Lame coefficients vary arbitrarily with the half-space depth. The problem is reduced to dual integral

equations. The developed methods make it possible to find the analytical asymptotically exact problem solution,

suitable for a PC. The influence of the Lame coefficients variation upon the contact stresses and size of the contact zone

with different radius of indenter as well as values of the impressing forces are studied. The effect of the non-homogeneity

is examined. The developed method allows to construct analytical solutions with presupposed accuracy and gives the

opportunity to do multiparametric and qualitative investigations of the problem with minimal computation time ex-

penditure. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The analysis of the interaction between a smooth rigid sphere and an elastic half-space is a fundamental
problem in contact mechanics. The solution of this problem was developed by Hertz (1881) and currently
the methods of the integral equation solution obtained from the Hertzian contact problem for a homo-
geneous half-space are well known; e.g., Johnson (1985), Gladwell (1980).

El-Sherbiney and Halling (1976) extended the classical Hertzian arguments to the system contact, where
one surface is covered with a layer of a homogeneous material possessing elastic properties different from
those of the substructure.

International Journal of Solids and Structures 39 (2002) 2745–2772

www.elsevier.com/locate/ijsolstr

* Corresponding author. Tel.: +7-8632-991821; fax: +7-8632-434885.

E-mail address: aizsm@mail.rnd.runnet.ru (S.M. Aizikovich).

0020-7683/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0020-7683 (02 )00124-5



The problem was reduced to an integral equation. This approximate solution was obtained by El-
Sherbiney and Halling (1976) by two different methods. One of these methods described by Popov (1962) is
efficient only for very thin layers lying on the rigid non-deformable substrate, in particular when layer
thickness H is less than the radius of contact zone aðk ¼ H=a < 0:5Þ. The second method used Vorovich
and Ustinov (1959) is applicable in the case when layer thickness is as follows: k > 1:7. Both of these
methods with slight modifications are applicable in the case when one of contacting bodies is a layer lying
on an elastic half-space.

The same problem was investigated by Potelejko and Filippov (1967). The solution of the integral
equation was obtained numerically.

Different aspects of generalized statements of the Hertzian problem have been considered in the recent
works of Kral et al. (1993, 1995), Moutmitounet et al. (1993), Yingzhi and Hills (1991), and Zeng et al.
(1992).

In the work of Suresh et al. (1997) new finite element computations were reported on the microme-
chanics of the penetration of a spherical indenter into a graded material and on the evolution of stress,
strain and displacement fields around the indenter. The numerical simulations were compared with the
analytical results.

In the present paper the Hertzian contact problem for both layered and functionally graded half-space is
studied analytically. We presume that the variation of the Lame coefficients with depth has general nature
(arbitrary continuous or piecewise continuous functions of depth). We assume elastic properties of a half-
space to become stable with depth. That is to say, it can be imagined as a non-homogeneous layer of
thickness H, which is completely coupled with a homogeneous half-space. Difficulties arise at the very first
stage when we use the method of integral transforms for the solution of this problem, because it is necessary
to solve the two-point boundary problem for the system of ordinary differential equations with the variable
coefficients in order to construct the transform of the integral equation kernel. To construct it we use an
effective special scheme of the method developed by Babeshko et al. (1987).

The numerically constructed kernel transform is approximated by an analytical expression of a special
type, so that it becomes to obtain a closed analytical solution of the approximate integral equation Aizi-
kovich and Aleksandrov (1984). It is shown that the resulting approximate solution is the bilateral as-
ymptotically exact problem solution for small and large values of a characteristic geometric parameter.

The accuracy of the obtained solution is studied in this paper.

2. Formulation of the problem

A non-deformable spherical indenter is impressed into surface C of a non-homogeneous elastic half-
space X by force P (Fig. 1). Cylindrical (r;u; z) coordinates relate to the half-space. It is assumed that all
deformations are elastic and the size of the contact zone a is small respectively to the radius of the sphere R,
while no friction force exists between the indenter and the surface of the half-space. The spherical indenter
surface in the vicinity of the original point of contact is approximated by a quadratic shape z ¼ wðrÞ ¼ br2.
The half-space is not loaded outside the indenter. Under the action of the force P, the indenter moves a
distance v along the z-axis.

The Lame coefficients KðzÞ and MðzÞ in the half-space very generally, that is, they are arbitrarily con-
tinuous or piecewise continuous functions of the depth z.

KðzÞ ¼ K0ðzÞ; MðzÞ ¼ M0ðzÞ; �H 6 z6 0

K ¼ K1 ¼ K0ð�HÞ; M ¼ M1 ¼ M0ð�HÞ; �1 < z < �H
ð1Þ

Let us suppose that the following conditions are satisfied
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min
z2ð�1;0�

KðzÞP c1 > 0; max
z2ð�1;0�

KðzÞ6 c2 < 1

min
z2ð�1;0�

MðzÞP c3 > 0; max
z2ð�1;0�

MðzÞ6 c4 < 1
ð2Þ

where c1, c2, c3, c4 are certain constants.
Under the above assumption, the boundary conditions have the form

z ¼ 0; szr ¼ szu ¼ 0;
rz ¼ 0; r > a
w ¼ vðrÞ ¼ v � wðrÞ; 06 r6 a

�
ð3Þ

Here w is the displacement along the z-axis, szr, szu, rz are radial, tangential and normal stresses, respec-
tively.

For z ¼ �H , the following conditions for the stress and strain must be performed:

rð1Þ
z ¼ rð2Þ

z ; sð1Þrz ¼ sð2Þrz ; wð1Þ ¼ wð2Þ; uð1Þ ¼ uð2Þ ð4Þ
Here u is the radial displacement, sð1Þrz , rð1Þ

z , wð1Þ, uð1Þ are stresses and displacements of the coating and sð2Þrz ,
rð2Þ
z , wð2Þ, uð2Þ are stresses and displacements of the substrate, which is a homogeneous half-space.
The stress and strain vanish for ðr;�zÞ ! 1. It is required to determine the size of the contact zone a,

the distribution of the contact normal stresses qðrÞ under the indenter

rzðr; 0Þ ¼ �qðrÞ; 06 r6 a ð5Þ
and to find the impressing force P. Here the problem of finding contact stress distribution of the function
qðrÞ is fundamental because after the determination of qðrÞ, the force P acting on the indenter can be found
from the condition of equilibrium of the indenter:

P ¼ 2p
Z a

0

qðqÞqdq ð6Þ

Fig. 1. Scheme of indentation test.
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In the present case, the edge of the indenter does not cut into the surface of the half-space. Consequently,
this relation must hold:

qðaÞ ¼ 0 ð7Þ
It is used for the determination of the contact region half-width a and imposes a certain restriction on
function qðrÞ.

It should be noted also that as there is no adhesion between the indenter and the half-space surface, the
relation qðrÞP 0 must hold for all r6 a for the correct statement of a problem.

3. Reduction of the problem to the dual integral equation

We use static equilibrium equations of the theory of elasticity written in the displacements in the case of
axially symmetrical deformation for the cylindrical coordinate system:

r
orz

oz
þ o

or
rsrzð Þ ¼ 0

o

or
ðrrrÞ � ru þ r

osrz
oz

¼ 0

rz ¼ 2M
ow
oz

þ Kh; rr ¼ 2M
ou
or

þ Kh

ru ¼ 2M
u
r
þ Kh; srz ¼ M

ow
or

�
þ ou

oz

�

h ¼ ow
oz

þ ou
or

þ u
r

ð8Þ

These equations can be presented in the next form, Ter-Mkrtch’ian (1961)

M r2u
�

þ oh
or

� u
r2

�
þ oM

oz
ow
or

�
þ ou

oz

�
þ o

or
ðKhÞ ¼ 0

M r2w
�

þ oh
oz

�
þ 2

oM
oz

ow
oz

þ o

oz
ðKhÞ ¼ 0

r2 ¼ 1

r
o

or
r
o

or

� �
þ o2

oz2

ð9Þ

We present radial displacement u, and vertical displacement w, in the Hankel integral form

uiðr; zÞ ¼ �
Z 1

0

Uiðc; zÞJ1ðcrÞcdc

wiðr; zÞ ¼
Z 1

0

Wiðc; zÞJ0ðcrÞcdc ði ¼ 1; 2Þ
ð10Þ

here subscript i ¼ 1 corresponds to the coating and i ¼ 2 corresponds to the substrate (a homogeneous half-
space), J1 is the Bessel function of the first order, J0 is the Bessel function of the zero order.

Eq. (9) with (10) can be presented in the form

MU 00
i þ cðM þ KÞW 0

i � c2ð2M þ KÞUi þM 0U 0
i þ cM 0Wi ¼ 0

ð2M þ KÞW 00
i � cðM þ KÞU 0

i � c2MWi þ 2M 0
�

þ K0
�
W 0

i � cK0Ui ¼ 0

i ¼ 1; z 2 ½�H ; 0�; i ¼ 2; z 2 ð�1;�HÞ

ð11Þ

Here the prime sign indicates the differential with respect to z.
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We introduce the auxiliary functions

U 

i ðc; zÞ ¼ �Hð0ÞUiðc; zÞcQ�1ðcÞ

W 

i ðc; zÞ ¼ �Hð0ÞWiðc; zÞcQ�1ðcÞ ði ¼ 1; 2Þ

Hð0Þ ¼ 2Mð0Þ Kð0Þð þ Mð0ÞÞ Kð0Þð þ 2Mð0ÞÞ�1
; Mð0Þ 6¼ 0

ð12Þ

QðcÞ ¼
Z a

0

qðqÞJ0ðcqÞqdq ð13Þ

qðqÞ ¼
Z 1

0

QðcÞJ0ðcqÞcdc ð14Þ

where QðcÞ is the Hankel transform of the unknown function qðrÞ. To reduce the mixed problem to an
integral equation it is necessary to construct the function W 


1 ðc; 0Þ.

4. Construction of the integral equation kernel function

Let us consider auxiliary problems with the following boundary conditions (prescribed normal stress):

z ¼ 0; srz ¼ szu ¼ 0; r2ðr; 0Þ ¼
0; r > a
�qðrÞ; 06 r6 a

�
ð15Þ

Conditions (4) are satisfied accordingly at z ¼ �H .
We introduce the notation

m1 ¼ U 
; m2 ¼ U 
0 ; m3 ¼ W 
; m4 ¼ W 
0 ð16Þ

Here the prime indicates the differentiation with respect to z. We rewrite the system (11) in the matrix form:

d~mm
dy

¼ A~mm

A ¼

0 1 0 0
c2 2MþK

M � M 0

M �c M 0

M �c MþK
M

0 0 0 1
c K0

2MþK c MþK
2MþK c2 M

2MþK � 2M 0þK0

2MþK

0
BB@

1
CCA; ~mm ¼

m1
m2
m3
m4

0
BB@

1
CCA ð17Þ

The general solution of the system (11) with the condition K0 ¼ M 0 ¼ 0 ðM 6¼ 0Þ has the form

U 

2 ðc; zÞ ¼ d1ð þ czd2Þecz

W 

2 ðc; zÞ ¼ d1ð � jd2 � czd2Þecz

j ¼ 3� 4m ¼ ðK þ 3MÞ=ðK þMÞ
ð18Þ

where d1, d2 are unknown constants, m is Poisson’s ratio. The solution,~mmðc; zÞ of (17) is constructed by the
method of simulating functions of Babeshko et al. (1987). According to the general scheme of the method
of simulating functions for the Eq. (17), we extend the solution of the differential equation with the constant
coefficients for z < �H , on the solution of the differential equation with the varying coefficients for
z 2 ½�H ; 0� by means of multiplying constants on some unknown functions in the former solution.
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~mmðc; zÞ ¼
X2
i¼1

diðcÞ~aaiðc; zÞ
" #

ecz ð19Þ

Here we find vectors ~aa1ðc; zÞ, ~aa2ðc; zÞ from the following Cauchy problems:

d~aai

dz
¼ A~aai � c~aai; z 2 ½�H ; 0� ði ¼ 1; 2Þ ð20Þ

with the initial conditions

~aa1ðc;�HÞ ¼ ð1; c; 1cÞ;
~aa2ðc;�HÞ ¼ cz; c

�
þ c2z;� j þ cz;� jc þ c þ c2z

���
z¼�H

ð21Þ

Vectors of the initial conditions,~aa1ðc;�HÞ and~aa2ðc;�HÞ defined from (19) under the condition that,~mmðc; zÞ
should be the same as the solution of (18) for all z < �H .

Functions d1ðcÞ, d2ðcÞ are determined from the conditions (15)

rzðr; 0Þ ¼ �qðrÞ; r6 a )
X2
i¼1

diðcÞ
�
� Kð0Þca1i ðc; 0Þ þ Kð0Þð þ 2Mð0ÞÞa4i ðc; 0Þ

�
¼ Hð0Þc

srzðr; 0Þ ¼ 0; 8r )
X2
i¼1

diðcÞ a2i ðc; 0Þ
�

þ ca3i ðc; 0Þ
�
¼ 0

ð22Þ

Here ak
i ðc; zÞ denotes the kth component of the vector~aaiðc; zÞ and the sums are taken over i ¼ 1, 2 ðk ¼ 1–4Þ.

The system (22) is uniquely solvable if its determinant is not equal to zero.
From (5) we finally obtain the expression for the kernel transform of the integral equation, the function

L
ðcÞ:

L
ðcÞ ¼ W 

1 ðc; 0Þ ¼

X2
i¼1

diðcÞa3i ðc; 0Þ ð23Þ

After determining W 

1 ðc; 0Þ, we apply the condition (3) and write it in the next form:

H�1ð0Þ
Z 1

0

W 

1 ðc; 0ÞQðcÞJ0ðcrÞdc ¼ v � wðrÞ; 06 r6 a ð24Þ

Using the conditions (13) and (14)Z a

0

qðqÞqdq
Z 1

0

W 

1 ðc; 0ÞJ0ðcrÞJ0ðcqÞdc ¼ Hð0Þ vð � wðrÞÞ; 06 r6 a ð25Þ

we make the change of variables and note

cH ¼ 1; k ¼ H
a
; ~rr ¼ r

a
; ~.. ¼ .

a

W 

1 ðc; 0Þ � L
ðcÞ � L
 1

H

� �
¼ Lð1Þ; qð~qqaÞ ¼ tð~qqÞ

f ð~rrÞ ¼ d � wð~rraÞ
a

; d ¼ v
a
; 06 ~rr6 1

ð26Þ

Let us rewrite (25)

1

k

Z 1

0

tð~qqÞ~qqd~qq
Z 1

0

Lð1ÞJ0
~rr1
k

 !
J0

~qq1
k

 !
d1 ¼ Hð0Þf ð~rrÞ; 06 ~rr6 1 ð27Þ
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Let us denote 1=k ¼ a ¼ caZ 1

0

tð~qqÞ~qqd~qq
Z 1

0

LðkaÞJ0ða~rrÞJ0ða~qqÞda ¼ Hð0Þf ð~rrÞ; 06 ~rr6 1 ð28Þ

It should be noted that in the following we consider dimensionless variables and omit tildes under them for
short.

Since the problem formulated for the case of the spherical indenter, w ¼ br2 is reduced to the following
type of the dual integral equationsR1

0
T ðaÞLðkaÞJ0ðarÞda ¼ Hð0Þf ðrÞ; 06 r6 1R1

0
T ðaÞJ0ðarÞada ¼ 0; r > 1

(
ð29Þ

T ðaÞ ¼
Z 1

0

tðqÞJ0ðaqÞqdq ð30Þ

5. The general properties of the kernel transforms of the integral equation of the problem

When the following conditions are satisfied

min
z2ð�1;0�

HðzÞP c1 > 0; max
z2ð�1;0�

HðzÞ6 c2 < 1; lim
z!�1

HðzÞ ¼ const

HðzÞ ¼ 2MðzÞ KðzÞ þMðzÞ
KðzÞ þ 2MðzÞ

ð31Þ

it can be demonstrated (Aizikovich and Aleksandrov, 1982), that the kernel transform LðcÞ has the fol-
lowing properties

LðcÞ ¼ p1 þ p2c þ p3c2 þOðc3Þ; c ! 0 ð32Þ

LðcÞ ¼ 1þ p4c�1 þ p5c�2 þ p6c�3 þOðc�4Þ; c ! 1 ð33Þ

p1 ¼ Hð0ÞH�1ð�HÞ ð34Þ
where p2, p3, p4, p5, p6 are some constants.

For multilayer media the property of a compliance function similar to (34) was noticed by Privarnikov
(1973).

The property (34) means that the value Lð0Þ for the problem under consideration is independent of the
way in which elastic moduli vary in the half-space from z ¼ 0 to z ! �1 and it is determined only by their
values for z ¼ 0 and z ! �1. Graphically it looks as follows: if the set of curves describing the certain laws
of the elastic moduli variation with depth have identical values on the surface of the half-space and as
z ! �1, then the graphs of corresponding transforms LðcÞ of the problem will issue from a common point
Lð0Þ ¼ p1 and converge at one point Lð1Þ ¼ 1:

Taking into consideration that the Lame coefficients K and M (M is sometimes denoted by G and named
the shear modulus) are connected with the Young’s modulus E and the Poisson’s ratio m by the relations

M ¼ G ¼ E
2ð1þ mÞ ; K ¼ Em

ð1þ mÞð1� 2mÞ ¼
2Gm
1� 2m

E ¼ Mð3K þ 2MÞ
K þM

; m ¼ K
2ðK þMÞ ; H ¼ G

1� m
¼ E

2ð1� m2Þ
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5.1. The certain auxiliary theorems concerning their analytical approximation

Let us introduce the following definitions:

Definition 1. The function LðcÞ belongs to the class PN if it has the form

LNðcÞ ¼
YN
i¼1

c2
�

þ A2
i

�
c2
�

þ B2
i

��1
; ðBi � BkÞðAi � AkÞ 6¼ 0; i 6¼ k ð35Þ

Here Ai, Bi ði ¼ 1; 2; . . . ;NÞ are certain complex constants.

Definition 2. The function LðcÞ belongs to the class RM if it has the form

LR
MðcÞ ¼

XM
k¼1

Ckc c2
�

þ D2
k

��1

Here Ck are certain real constants, and Bk ðk ¼ 1; 2; . . . ;MÞ are certain complex constants.

Definition 3. The function LðcÞ belongs to the class SN ;M if it has the form

LðcÞ ¼ LN ðcÞ þ LR
MðcÞ ð36Þ

We show that the expressions of the form (36) can approximate LðcÞ with the properties (32) and (33) using
the following lemma (Akhiezer, 1965; Babeshko, 1972):

Lemma 1. Let an even real function uðcÞ be continuous on the whole real axis and vanish at infinity, then it can
be approximated in Cð�1;1Þ by a series of functions of the form

uk ¼ c2
�

þ D2
k

��1

Theorem 1. Provided that if the function LðcÞ possesses the properties (32) and (33), it allows approximation by
the expressions of the form (36).

Proof. We select constants Ai and Bi ði ¼ 1; 2; . . . ;NÞ in (35) such that

YN
i¼1

A2
i B

�2
i

� �
¼ p1 ð37Þ

We consider the function

LRðcÞ ¼ ðLðcÞ � LNðcÞÞc�1 ð38Þ
On the basis of properties (32) and (33) and condition (37), it follows that LRðcÞ satisfies the condition of
Lemma 1. This means that the following representation holds

LRðcÞ ¼
X1
k¼1

Ck c2
�

þ D2
k

��1 ð39Þ

Or from the conditions (38) and (39),

LðcÞ ¼ LN ðcÞ þ c
XM
k¼1

Ck c2
�

þ D2
k

��1
� ð40Þ
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For a numerical realization the improving approximation of LðcÞ by functions of the class PN can be
achieved successfully by using the following algorithm.

We map function LðcÞ by mapping u ¼ c2=ðc2 þ C2Þ from interval ð0;1Þ into segment ð0; 1Þ ðc ¼
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu� 1Þ�1

q
Þ. Here C is a positive constant, which should be selected to build the optimal approximation

of function LðcÞ. As initial value C can be taken

C ¼ c
; where c
 such as Lðc
Þ ¼ 1

2
max

c2½0;1Þ
LðcÞ

�
þ min

c2½0;1Þ
LðcÞ

�

Here C is a parameter of mapping, which moves the point c ¼ C of axes ð0;1Þ into the point u ¼ 1=2 of
segment ð0; 1Þ.

We approximate the functions
ffiffiffiffiffiffiffiffiffi
LðcÞ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L�1ðcÞ

p
on segment ð0; 1Þ by Nth order Bernstein’s poly-

nomials (or by Chebyshev’s nodes), and thus obtain

ffiffiffiffiffiffiffiffiffiffiffiffi
LN ðcÞ

p
¼
XN
i¼0

aiui;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L�1
N ðcÞ

q
¼
XN
i¼0

biui ð41Þ

here ai, bi are coefficients of Bernstein’s polynomials which can be defined as follows. If f ðxÞ is a continuous
function determined on segment ð0; 1Þ then Bernstein’s polynomial BN ðxÞ for this function has the form
according to Goncharov (1934),

BN ðxÞ ¼
XN
m¼0

f
m
N

� �
Cm

Nx
mð1� xÞN�m

where Cm
N are the binomial coefficients.

Then,

ffiffiffiffiffiffiffiffiffiffiffiffi
LN ðcÞ

p
¼

XN
i¼0

a
i c
2i

 !
c2
�

þ C2
��N

;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L�1
N ðcÞ

q
¼

XN
i¼0

b
i c
2i

 !
c2
�

þ C2
��N ð42Þ

where coefficients a
i , b


i are defined from (41) after the change of variable u ¼ c2= c2 þ C2ð Þ.

LN ðcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
LN ðcÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L�1
N ðcÞ

p ¼
XN
i¼0

a
i c
2i

 ! XN
i¼0

b
i c
2i

 !�1

ð43Þ

For each non-homogeneity law, the parameter C is selected separately in order to LN ðcÞ will approximate
the function LðcÞ more exactly for given N.

By determining the roots of the numerator and denominator in (43), we find the desired values of Ai,
Bi ði ¼ 1; 2; . . . ;NÞ. Such method permits avoiding the presence of an N-triple root in the denominator of
the approximation found.

5.2. Numerical results

The analysis will be carried out for the typical kinds of the layered and functional graded models.
For such models, we suppose the constant Poisson’s ratio, m ¼ 1=3, and the Young’s modulus varies with

depth in accordance with the relation

EðzÞ ¼ Ei
c ¼ E0fiðzÞ; �H 6 z6 0

E0; z < �H

�
ð44Þ

i ¼ 1; 2; . . . ; 6
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f1ðzÞ ¼ 3:5; f2ðzÞ ¼
1

3:5

f3ðzÞ ¼ 3:5þ 2:5
z
H
; f4ðzÞ ¼

1

3:5
� 2:5

3:5

z
H

f5ðzÞ ¼ 1þ 2:5

3:5
sin

zp
H

� �
; f6ðzÞ ¼ 1� 2:5 sin

zp
H

� �
Fig. 2 shows the non-homogeneity laws fjðz0Þ, j ¼ 0; 1; . . . ; 6 described above. Here and below z0 ¼ z=H .
Figs. 3–9 show the graphs of the kernels LðcÞ (curve ‘1’) of the integral equations constructed numerically
for the appropriate non-homogeneity laws. On the Figs. 3–9, the curves ‘2’ show the approximation error of
the kernel transforms which corresponds to (40) and equals LðcÞ � LN ðcÞ, for N ¼ 10.

Below it is an example of the calculated coefficients Ak, Bk, k ¼ 1; . . . ;N for the non-homogeneity laws
f1ðzÞ, f2ðzÞ, in the form xþ iy, where x is the real part and y is the imaginary one.

It should be noted that according to Aizikovich and Aleksandrov (1982) the exponential decrease with
respect to c for the layered coatings is characteristic of the kernel transform

LðcÞ ¼ 1þ 1
2
e�2ch1 þO e�2ch1

� �
; c ! 1

where h1 is the thickness of the upper layer. At the same time, the following type of behaviour at infinity is
characteristic of blended coatings

LðcÞ ¼ 1þ C1c
�1 þ C2c

�2 þOðc�3Þ; c ! 1

where C1, C2 are constants. Hence, the kernel transform for the layered coating (when c ! 1) is ap-
proaching to 1 more rapidly than in the case of the functional graded coating.

Law fj, j ¼ 1; 2 Coefficients, Ak,
k ¼ 1; . . . ; 10

Values Ak Coefficients Bk,
k ¼ 1; . . . ; 10

Values Bk

f1ðzÞ A1 ¼ 0:842þ 0:217i B1 ¼ 0:749þ 0:000i
A2 ¼ 0:842� 0:217i B2 ¼ 1:231þ 0:111i
A3 ¼ 1:329þ 0:068i B3 ¼ 1:231� 0:111i
A4 ¼ 1:329� 0:068i B4 ¼ 0:851þ 0:372i
A5 ¼ 0:992� 0:611i B5 ¼ 0:851� 0:372i
A6 ¼ 0:992þ 0:611i B6 ¼ 2:482þ 0:000i
A7 ¼ 1:673þ 1:103i B7 ¼ 1:116þ 0:831i
A8 ¼ 1:673� 1:103i B8 ¼ 1:116� 0:831i
A9 ¼ 2:395þ 0:474i B9 ¼ 2:102þ 0:742i
A10 ¼ 2:395� 0:474i B10 ¼ 2:102� 0:742i

f2ðzÞ A1 ¼ 0:642þ 0:000i B1 ¼ 2:310þ 0:000i
A2 ¼ 1:244þ 0:000i B2 ¼ 1:069� 0:544i
A3 ¼ 1:196þ 0:700i B3 ¼ 1:069þ 0:544i
A4 ¼ 1:196� 0:700i B4 ¼ 1:330þ 0:000i
A5 ¼ 0:937� 0:381i B5 ¼ 0:832þ 0:331i
A6 ¼ 0:937þ 0:381i B6 ¼ 0:832� 0:331i
A7 ¼ 2:205þ 0:404i B7 ¼ 1:793þ 0:528i
A8 ¼ 2:205� 0:404i B8 ¼ 1:793� 0:528i
A9 ¼ 1:666þ 0:475i B9 ¼ 1:683þ 0:810i
A10 ¼ 1:666� 0:475i B10 ¼ 1:683� 0:810i
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It should be noted that the kernel transform for the two-layered law of non-homogeneity is approxi-
mated more exactly by the analytical expression (35).

6. The asymptotic solution of an integral equation of the problem

6.1. Existence and uniqueness of the solution of the integral equation of the problem for LðcÞ of class PN

Eq. (29) can be written in terms of the operator for LðcÞ of class PN in the form

PN t ¼ f

Fig. 2. Non-homogeneity laws describing considered variations of elastic modulus with depth, fiðz0Þ, i ¼ 0–6.

Fig. 3. Kernel transform LðcÞ of integral equation for non-homogeneity law f0ðz0Þ.
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Fig. 4. Kernel transform LðcÞ of integral equation for non-homogeneity law f1ðz0Þ.

Fig. 5. Kernel transform LðcÞ of integral equation for non-homogeneity law f2ðz0Þ.

Fig. 6. Kernel transform LðcÞ of integral equation for non-homogeneity law f3ðz0Þ.
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Fig. 7. Kernel transform LðcÞ of integral equation for non-homogeneity law f4ðz0Þ.

Fig. 8. Kernel transform LðcÞ of integral equation for non-homogeneity law f5ðz0Þ.

Fig. 9. Kernel transform LðcÞ of integral equation for non-homogeneity law f6ðz0Þ.
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Lemma 2. Eq. (29) is solvable uniquely for LðcÞ of class PN in the class of functions Cð�1; 1Þ, hence, the
estimate

ktðrÞkCð�1;1Þ 6m PNð Þkf kCð�1;1Þ; m PNð Þ ¼ const ð45Þ

holds in Cð�1; 1Þ. Below, mðAÞ shall denote a certain constant dependent on the specific form of the functions
belonging to the class A.

Using the operators

Uf
1uðrÞ ¼

d

df

Z f

0

rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � r2

p uðrÞdr; Uf
1J0ðarÞ

�
¼ cos af

�
Uf

2uðrÞ ¼
Z 1

f

rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � r2

p uðrÞdr; Uf
2J0ðarÞ

�
¼ a�1 cos af

�
we represent (29) in the formR1

0
T ðaÞLðkaÞ cos afda ¼ Hð0ÞgðfÞ; 06 f6 1R1

0
T ðaÞ cos afda ¼ 0; f > 1

�
ð46Þ

gðfÞ ¼ Uf
1f ðrÞ

In our case

Uf
1 d

�
� wðraÞ

a

�
¼ Uf

1 d

�
� ar2

2R

�
¼ d � a

R
f2 ð47Þ

We use the definition

Hð0ÞgðfÞ ¼ k1g1ðfÞ; g1ðfÞ ¼ f2 þ k2
k1

From (47), k1 ¼ �ða=RÞHð0Þ, k2 ¼ dHð0Þ.
In the case when

LðkaÞ ¼ LN ðkaÞ ¼ P1ðk2a2Þ
P 2ðk2a2Þ

¼
YN
i¼1

k2a2 þ A2
i

k2a2 þ B2
i

ð48Þ

by using the method developed by Aleksandrov (1973), we have obtained a solution of the problem. LN has
the representation:

LNðkaÞ ¼ 1þ
XN
k¼1

skB2
kk

�2 a2
�

þ B2
kk

�2
��1

here sk ¼ �L~kk
N ðiBkk

�1Þð1� A2
kB

�2
k Þ. We use the definitions

L
~kk
NðkaÞ ¼

YN
i¼1;~kk

k2a2 þ A2
i

k2a2 þ B2
i

where
QN

i¼1;k means that the mth factor is absent in this product.
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Let us introduce the function

pðfÞ ¼ 1

k1

Z 1

0

T ðaÞ cos afda ð49Þ

Then, using the operational calculus methods (Lure, 1955), (46) is represented in the form

P1ð�DÞpðfÞ ¼ P2ð�DÞg1ðfÞ; D ¼ d2

df2
; f 2 ½0; 1� ð50Þ

with polynomials P1 and P2 defined in Eq. (48).
The solution of differential equation (50) can be written in the form

pðfÞ ¼
XN
i¼1

Ci cosh Aik
�1f

� �
þ L�1

N ð0Þ f2
"

þ k2
k1

þ 2k2
XN
i¼1

A�2
i

�
� B�2

i

�#
ð51Þ

where coefficients Ci, i ¼ 1; . . . ;N are unknown and will be defined later from the condition that this so-
lution should satisfy identically the integral equation (46).

If we use an inverse Fourier transform in (49), then we obtain

T ðaÞ ¼ 2

p
k1 L�1

N ð0Þ 2
a cos a � sin a

a3

�(
þ 1

�
þ k2

k1
þ 2S1

�
sin a

a

�

þ
XN
i¼1

Ci
Aik

�1 sinh Aik
�1

� �
cos a þ a sin a cosh Aik

�1
� �

a2 þ A2
i k

�2

)
ð52Þ

where

S1 ¼ k2
XN
i¼1

A�2
i

�
� B�2

i

�
According to (30) we obtain an expression for stresses, if we use the Hankel transform

tðrÞ ¼
Z 1

0

T ðaÞJ0ðarÞda ð53Þ

Substituting (52) in (53), we obtain

tðrÞ ¼ 2

p
k1 L�1

N ð0Þ
�(
� 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
þ 1

�
þ k2

k1
þ 2S1

�
1ffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

�

þ
XN
i¼1

Ci
cosh Aik

�1
� �
ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
 

� Aik
�1

Z 1

r

sinh Aik
�1f

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � r2

p df

!)
; 06 r6 1 ð54Þ

We can find a constant k2 from the condition qð1Þ ¼ 0, which eliminates the diverging rams in Eq. (54):

L�1
N ð0Þ

�
� dR

a
þ 1þ 2S1

�
þ
XN
i¼1

Ci cosh Aik
�1

� �
¼ 0 ð55Þ

Coefficients Ci are found from the condition that if we substitute T ðaÞ from (52) in (46) then the last one
must be identically satisfied for LðkaÞ in the form (48).
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Z 1

0

T ðaÞ 1

 
þ
XN
k¼1

skB2
kk

�2

a2 þ B2
kk

�2

!
cos afda ¼ k1f

2 þ k2; 06 f6 1 ð56Þ

From (56) we obtain the linear algebraic system of equations for the coefficients Ci

XN
i¼1

Ci
Aik

�1 sinh Aik
�1

� �
cos a þ Bkk

�1 cosh Aik
�1

� �
B2

kk
�2 � A2

i k
�2

þ LNð0ÞBkk
�1

� ��1

(
� dR

a
þ 1þ 2

Bkk
�1 þ 1

B2
kk

�2

"

þ k2
XN
i¼1

A�2
i

�
� B�2

i

�#)
¼ 0; 06 r6 1 ð57Þ

The system (57) is solvable uniquely if Ai, Bk satisfy conditions (35). The assertion of the Lemma 2 and the
estimate (45) results from here. �

In accordance with (55), the expression for the normal contact stresses is represented in the form

tðrÞ ¼ 2

p
Hð0Þ a

R
2L�1

N ð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
(

þ
XN
i¼1

CiAik
�1

Z 1

r

sinh Aik
�1f

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � r2

p df

)
; 06 r6 1 ð58Þ

The acting force P is defined from the equilibrium condition of the indenter

P ¼ 2pa2
Z 1

0

tðrÞrdr

Hence

P ¼ 4a3

R
Hð0Þ 2

3
L�1
N ð0Þ

(
þ
XN
i¼1

CiAik
�1
�
� cosh Aik

�1
� �

þ Aik
�1 sinh Aik

�1
� ��)

ð59Þ

Theorem 2. If the conditions (35) hold and the non-homogeneity law is such that oP=oa, being the function of
Ai, Ci satisfies

oP
oa

> 0; P 6¼ 0; a 6¼ 0 ð60Þ

then the operator PN is reversible and the following estimate holds

tðrÞk kCð�1;1Þ 6 P�1
N

!! !! � fk kCð�1;1Þ ð61Þ

Let us consider an example. For N ¼ 1 constants C1 and can be defined from the next linear algebraic
system of equations

B1

A1

� �2�
� dR

a
þ 1þ 2k2ðA2

1 � B2
1Þ
"
þ C1 coshðA1k

�1Þ ¼ 0

C1

A1 sinhðA1k
�1Þ þ B1 coshðA1k

�1Þ
B2
1 � A2

1

þ B1

A2
1

�
� dR

a
þ 1þ 2k2 B1k

�1 þ 1

B2
1

�
þ ðA�2

1 � B�2
1 Þ
�"

¼ 0; 06 r6 1
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tðrÞ ¼ 2

p
Hð0Þ a

R
2
B2
1

A2
1

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
(

þ C1A1k
�1

Z 1

r

sinhðA1k
�1fÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 � r2
p df

)
; 06 r6 1

6.2. Existence and uniqueness of the solution of the problem for LðcÞ of class SN ;M

The Eq. (29) can be written in the operator form for LðcÞ of class SN ;M in the form

PN t þ RMt ¼ f ð62Þ

Definition 4. We shall say that function f ðxÞ, absolutely integrated on a segment ½0; 1�, satisfies condition
M0, if a Fourier–Bessel expansion holds (M0

f is a certain constant), Koshliakov et al., 1962

f ðxÞ ¼
X1
n¼1

a0nJ0ðlnxÞ;
X1
n¼1

j a0nln j 6M0
f < 1

Here l1; l2; . . . ; lk; . . . are positive roots of Bessel’s function J0ðxÞ indexed in increasing order, a0n,
n ¼ 1; 2; . . . are coefficients of a Fourier–Bessel series expansion of f ðxÞ.

a0n ¼
2

J 2
1 ðlnÞ

Z 1

0

tf ðtÞJ0ðlntÞdt

Lemma 3. Operator P�1
N RM of the problem is a compression operator in space Cð�1; 1Þ when the condition

(35) is satisfied, if 0 < k < k
 or k > k0, where k
 and k0 are certain fixed values of k.

We consider the operator RMðtÞ. Without loss of generality, we set M ¼ 1 and thus obtaining

R1ðtÞ ¼
Z 1

0

tðqÞqdq
Z 1

0

d1k
�1a

a2 þ d2
2k

�2
J0ðaqÞda ð63Þ

where d1, d2 are the certain constants.
We represent R1ðtÞ as the Fourier–Bessel series

R1ðtÞ ¼
X1
k¼1

akJ0ðlkrÞ

Coefficients ak are found from the following formula

ak ¼
2d1k

�1

J 2
1 ðlkÞðl2

k þ d2
2k

�2Þ

Z 1

0

tðqÞqJ0ðqlkÞdq

�
� lkJ1ðlkÞK0ðd2k�1Þ

Z 1

0

tðqÞqI0ðqd2k�1Þdq

�
ð64Þ

where K0 is the McDonald’s function of the zero order, I0 is the Bessel function of imaginary argument of
the zero order.

Using the asymptotic estimates of cylindrical functions of an imaginary argument (Gradshtein and
Ryzhik, 1965):

K0ðzÞ � � ln z; I0ðzÞ0 � 1 for z ! 0
K0ðzÞ � �e�z

ffiffiffiffiffiffiffiffiffiffi
p=2z

p
; I0ðzÞ0 � ez=

ffiffiffiffiffiffiffi
2pz

p
for z ! 1K0
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we obtain the following estimate from (64)

max
r2½0;1�

R1ðtÞj j6C1

X1
k¼1

akj j6 kM0; k ! 0 k
�

< k0
�

max
r2½0;1�

R1ðtÞj j6C2

X1
k¼1

akj j6 k�1M
; k ! 1 kð > k
Þ
ð65Þ

here C1, C2 are the certain constants and constants M0 and M
 are independent of k.
Hence, analogously to the estimates of Lemma 2, k can be selected so that operator P�1

N RM will be a
compression operator under the conditions of Lemma 2, Kantorovich and Akilov (1982). On this basis, by
applying the Banach principle of compressed mappings to the Eq. (62)

t þ P�1
N RMt ¼ P�1

N f ð66Þ

we obtain the proof of the existence and uniqueness of the solution of (29) under the constraints imposed by
Lemma 2. �

That means the following estimates take place.

Theorem 3. The Eq. (29) of the problem is solvable uniquely in the space Cð�1; 1Þ for LðcÞ of the class SN ;M , if
f ðrÞ is even function and satisfies the conditionM0 for 0 < k < k
 or k > k0, where k
 and k0 are certain fixed
values of k. Hence, the following estimate holds:

ktðrÞkCð�1;1Þ 6m PN ;RMð ÞM0
f

Finally, we formulate the following theorem:

Theorem 4. The Eq. (29) of the problem is solvable uniquely in the space Cð�1; 1Þ for LðcÞ of the class SN ;1 if
f ðrÞ is even function and satisfies the condition M0 for 0 < k < k
 or k > k0, where k
 and k0 are the certain
fixed values of k, hence, the following estimate holds:

ktðrÞkCð�1;1Þ 6m PN ;R1ð ÞM0
f ð67Þ

The proof of Theorem 4 follows from the assertions in Theorem 2 and 3 and is analogous to the one carried
out in Babeshko (1971, 1972).

6.3. The stiffness concept of the depthwise non-homogeneous material

As a result of the penetration of the indenter into non-homogeneous material we can obtain the relation
between the impressing force and the displacement of the indenter. Directly using this relation is not
convenient for the determination of coating non-homogeneity. We define an expression which is referred to
as the stiffness of the material

S ¼ 3

4

P
av

1

1� m2

where a is the contact zone radius, v is the displacement of the indenter, m is the Poisson’s ratio. For the
homogeneous material the stiffness is a constant equivalent to the shear modulus of the foundation
(Johnson, 1985). For the non-homogeneous material, SðaÞ is a function depending on the contact zone size.
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6.4. Numerical results

Fig. 10 shows the graphs of the quantity q0ðrÞ, which is the distribution of the contact stresses under a
non-deformable spherical indenter for a homogeneous half-space with EðzÞ ¼ E0.

Figs. 11–16 show graphs of the ratio UiðrÞ ¼ qiðrÞq�1
0 ðrÞ which characterizes the distribution of normal

contact stresses qiðrÞ under a non-deformable spherical indenter, for the non-homogeneity of type
fiðzÞ ði ¼ 1; . . . ; 6Þ from the relation (44). The values of qiðrÞ were found by the formula (58) with N ¼ 10.
The ratio of qiðrÞ to q0ðrÞ is considered for equal values of the contact zones for a spherical indenter im-
pressed into a non-homogeneous and, respectively, into a homogeneous half-space the elasticity modulus of
which is equal to the elasticity modulus of the substrate.

Fig. 10. Distribution of contract stresses under a non-deformable spherical indenter for a homogeneous half-space.

Fig. 11. Graph of the ratio U1ðrÞ ¼ q1ðrÞ=q0ðrÞ which characterizes the distribution of normal contact stresses q1ðrÞ under a non-

deformable spherical indenter.
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Fig. 17 shows graphs of Sðk�1Þ=S0 the ratio of the stiffness of the non-homogeneous coatings S to the
stiffness of the substrate––a homogeneous half-space S0 for the five cases of the non-homogeneity laws
mentioned above fiðz0Þ, ði ¼ 0; 1; 2; 3; 4Þ. To make the graph more descriptive we present them using log-
arithmic scale. The curve numbers corresponds to the variation laws of the elasticity modulus. Fig. 17
shows that using the results of non-destructive indentation experiments we can evaluate the variation of the
elasticity modulus with the depth. Moreover, it shows that this kind of test gives the possibility to dis-
tinguish changes of surface layer properties not only in terms of more soft or more hard, but also to de-
termine the variation of the coatings elastic properties with the depth (blended or layered), provided that
the layer size is known.

In Fig. 18, curves 0, 5 and 6 show the ratio of the stiffness of non-homogeneous coatings, S, to the
stiffness of substrate, S0, for fiðz0Þ, ði ¼ 0; 5; 6Þ which characterizes the non-homogeneity laws described
above.

Fig. 12. Graph of the ratio U2ðrÞ ¼ q2ðrÞ=q0ðrÞ which characterizes the distribution of normal contact stresses q2ðrÞ under a non-

deformable spherical indenter.

Fig. 13. Graph of the ratio U3ðrÞ ¼ q3ðrÞ=q0ðrÞ which characterizes the distribution of normal contact stresses q3ðrÞ under a non-

deformable spherical indenter.
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The curve numbers correspond to the variation laws of elastic modulus. It is obvious from Figs. 17 and
18 that the middle region of the stiffness change graph is the most informative one ð1=4H 6 a6 4HÞ.

7. A posteriori accuracy evaluation of the bilateral asymptotically exact method of the solution of integral

equations

It was shown above that the problem of determining contact stress distribution arising from indentation
of a spherical indenter into the depthwise non-homogeneous layer coupled with a homogeneous half-space

Fig. 14. Graph of the ratio U4ðrÞ ¼ q4ðrÞ=q0ðrÞ which characterizes the distribution of normal contact stresses q4ðrÞ under a non-

deformable spherical indenter.

Fig. 15. Graph of the ratio U5ðrÞ ¼ q5ðrÞ=q0ðrÞ which characterizes the distribution of normal contact stresses q5ðrÞ under a non-

deformable spherical indenter.
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is reduced to the solution of the dual integral equation in the form (29) with the additional condition of
indenter equilibrium

P ¼ 2p
Z 1

0

qðqÞqdq

Constructing the approximate bilateral asymptotically exact solution of the problem, we substituted the
kernel of (29) by its approximation in form (35).

After determining the contact stresses qN ðqÞ distribution, we can find the integral characteristic of the
displacement error under the indenter

Fig. 16. Graph of the ratio U6ðrÞ ¼ q6ðrÞ=q0ðrÞ which characterizes the distribution of normal contact stresses q6ðrÞ under a non-

deformable spherical indenter.

Fig. 17. Graph of the ratio Sðk�1Þ=S0 for the fiðz0Þ, i ¼ 0–4.
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DN ðrÞ ¼
Z 1

0

qN ðqÞqdq
Z 1

0

LðkaÞð � LNðkaÞÞJ0ðaqÞJ0ðarÞdr ð68Þ

which is obtained as a result of the substitution of the kernel transform by its approximation. The function
f ðrÞ from the right part of (29) corresponds to surface displacement values of the non-homogeneous half-
space under the spherical indenter and so the physical sense of the error is the relative displacement. The
integral expression in Eq. (68) is bounded, hence, we can easily find DN ðrÞ with the help of quadrature
formulas (Gauss formula, for example). The DNðrÞ value gives the absolute error for the indenter dis-
placement determination. We obtain the relative error rate as the ratio:

eðrÞ ¼ 100� DN ðrÞ
wðrÞ

where wðrÞ is the surface displacement of a half-space under the indenter.

7.1. The numerical investigations of the solution error depending on k (k ! 0; k ! 1)

The results of the calculations of the value eðrÞ for different non-homogeneity laws are shown on Figs.
19–25. In the top part of the figures the relation of the elasticity modulus change with layer depth is
graphed. Graphs 19–25 reveal the correlation of the errors and the different non-homogeneity laws.

When we construct the approximations LN ðcÞ we can vary both the number of terms in the product (36)
and the mapping parameter. This gives us the opportunity of controlling the approximation accuracy
within certain limits. Thus, selecting the mapping parameter value as equal to the abscissa of the maximum
error ðLðcÞ � LN ðcÞÞ=LðcÞ, we can reduce its value to some value linked with the elastic modulus change law
(usually these values are achieved for a few points c).

Fig. 26 shows the integral error of the displacement value xðkÞ

xðkÞ ¼
Z 1

0

eðr; kÞdr

The figure reveals that the theoretically determined bilateral asymptotic properties of the solution
ðk ! 0; k ! 1Þ are confirmed by numerical experiments.

Fig. 18. Graph of the ratio Sðk�1Þ=S0 for the fiðz0Þ, i ¼ 0, 5, 6.
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8. Conclusion

In this paper the Hertzian contact problem for both layered and functional graded half-space is studied
analytically. We presumed that the variation with depth of the Lame coefficients in the half-space has
general nature (arbitrary continuous or piecewise continuous functions of depth). We assumed elasticity

Fig. 19. Relative error eðrÞ of surface displacement determination for homogeneous half-space.

Fig. 20. Relative error eðrÞ of surface displacement determination for law of non-homogeneity f1ðz0Þ ¼ 3:5.
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properties of a half-space to become stable with depth, i.e., it was imagined as a non-homogeneous layer
which is completely coupled with a homogeneous half-space. For the first stage we used the method of
integral transforms for the solution of this problem. The two-point boundary problem for the system of
ordinary differential equations with variable coefficients was solved using an effective special scheme in
order to construct the transform of the integral equation kernel.

The numerically constructed kernel transform was approximated by an analytical expression of a special
type, so that it has become possible to obtain a closed analytical solution of the approximate integral
equation. The resulting approximate solution of the problem was shown to be the bilateral asymptotically
exact one for small and large values of a characteristic geometric parameter.

Error evaluations for constructed approximate analytical solutions of the problem were carried out
theoretically. The method can be easily implemented as the set of programs, which are PC compatible.

Fig. 21. Relative error eðrÞ of surface displacement determination for law of non-homogeneity f2ðz0Þ ¼ 1=3:5.

Fig. 22. Relative error eðrÞ of surface displacement determination for linear decreasing law of non-homogeneity.
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Fig. 23. Relative error eðrÞ of surface displacement determination for linear increasing law of non-homogeneity.

Fig. 24. Relative error eðrÞ of surface displacement determination for sinusoidal (concave) law of non-homogeneity.

Fig. 25. Relative error eðrÞ of surface displacement determination for sinusoidal (convex) law of non-homogeneity.
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