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Abstract

The contact problem for the impression of spherical indenter into a non-homogeneous (both layered and func-
tionally graded) elastic half-space is considered. Analytical methods for solving this problem have been developed. It is
assumed that the Lame coefficients vary arbitrarily with the half-space depth. The problem is reduced to dual integral
equations. The developed methods make it possible to find the analytical asymptotically exact problem solution,
suitable for a PC. The influence of the Lame coefficients variation upon the contact stresses and size of the contact zone
with different radius of indenter as well as values of the impressing forces are studied. The effect of the non-homogeneity
is examined. The developed method allows to construct analytical solutions with presupposed accuracy and gives the
opportunity to do multiparametric and qualitative investigations of the problem with minimal computation time ex-
penditure. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The analysis of the interaction between a smooth rigid sphere and an elastic half-space is a fundamental
problem in contact mechanics. The solution of this problem was developed by Hertz (1881) and currently
the methods of the integral equation solution obtained from the Hertzian contact problem for a homo-
geneous half-space are well known; e.g., Johnson (1985), Gladwell (1980).

El-Sherbiney and Halling (1976) extended the classical Hertzian arguments to the system contact, where
one surface is covered with a layer of a homogeneous material possessing elastic properties different from
those of the substructure.
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The problem was reduced to an integral equation. This approximate solution was obtained by El-
Sherbiney and Halling (1976) by two different methods. One of these methods described by Popov (1962) is
efficient only for very thin layers lying on the rigid non-deformable substrate, in particular when layer
thickness A is less than the radius of contact zone a(4 = H/a < 0.5). The second method used Vorovich
and Ustinov (1959) is applicable in the case when layer thickness is as follows: 4 > 1.7. Both of these
methods with slight modifications are applicable in the case when one of contacting bodies is a layer lying
on an elastic half-space.

The same problem was investigated by Potelejko and Filippov (1967). The solution of the integral
equation was obtained numerically.

Different aspects of generalized statements of the Hertzian problem have been considered in the recent
works of Kral et al. (1993, 1995), Moutmitounet et al. (1993), Yingzhi and Hills (1991), and Zeng et al.
(1992).

In the work of Suresh et al. (1997) new finite element computations were reported on the microme-
chanics of the penetration of a spherical indenter into a graded material and on the evolution of stress,
strain and displacement fields around the indenter. The numerical simulations were compared with the
analytical results.

In the present paper the Hertzian contact problem for both layered and functionally graded half-space is
studied analytically. We presume that the variation of the Lame coefficients with depth has general nature
(arbitrary continuous or piecewise continuous functions of depth). We assume elastic properties of a half-
space to become stable with depth. That is to say, it can be imagined as a non-homogeneous layer of
thickness H, which is completely coupled with a homogeneous half-space. Difficulties arise at the very first
stage when we use the method of integral transforms for the solution of this problem, because it is necessary
to solve the two-point boundary problem for the system of ordinary differential equations with the variable
coefficients in order to construct the transform of the integral equation kernel. To construct it we use an
effective special scheme of the method developed by Babeshko et al. (1987).

The numerically constructed kernel transform is approximated by an analytical expression of a special
type, so that it becomes to obtain a closed analytical solution of the approximate integral equation Aizi-
kovich and Aleksandrov (1984). It is shown that the resulting approximate solution is the bilateral as-
ymptotically exact problem solution for small and large values of a characteristic geometric parameter.

The accuracy of the obtained solution is studied in this paper.

2. Formulation of the problem

A non-deformable spherical indenter is impressed into surface I' of a non-homogeneous elastic half-
space Q by force P (Fig. 1). Cylindrical (r, ¢, z) coordinates relate to the half-space. It is assumed that all
deformations are elastic and the size of the contact zone a is small respectively to the radius of the sphere R,
while no friction force exists between the indenter and the surface of the half-space. The spherical indenter
surface in the vicinity of the original point of contact is approximated by a quadratic shape z = y(r) = pr.
The half-space is not loaded outside the indenter. Under the action of the force P, the indenter moves a
distance y along the z-axis.

The Lame coefficients A(z) and M(z) in the half-space very generally, that is, they are arbitrarily con-
tinuous or piecewise continuous functions of the depth z.

AG) = A@), M(z) = My(z), —H<z<0

1
A:Aleo(—H), M:M]:M()(—H), —o<z<—H ( )

Let us suppose that the following conditions are satisfied
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Fig. 1. Scheme of indentation test.

min A(z) = ¢; >0, max A(z) <ep < 00

z€(—00;0] z€(—00;0] (2)
min M(z) = ¢; >0, max M(z) <cq < 00

z€(—00;0] z€(—00;0]

where c;, ¢, ¢3, ¢4 are certain constants.
Under the above assumption, the boundary conditions have the form

_ o _ g, =0, r>a

=0 w=r=0 ATy 02r<a ®

Here w is the displacement along the z-axis, t.,, 7.,, 0. are radial, tangential and normal stresses, respec-
tively.
For z = —H, the following conditions for the stress and strain must be performed:

o) = g 1) = @

z ) rz rz )

wh) =@ ) = 4@ )

Here u is the radial displacement, (), ¢{V, w1, u()) are stresses and displacements of the coating and %),
a'?, w?, u® are stresses and displacements of the substrate, which is a homogeneous half-space.
The stress and strain vanish for (r, —z) — oco. It is required to determine the size of the contact zone q,

the distribution of the contact normal stresses ¢(r) under the indenter
az(r,O):—q(r), 0<r§a (5)

and to find the impressing force P. Here the problem of finding contact stress distribution of the function
q(r) is fundamental because after the determination of ¢(r), the force P acting on the indenter can be found
from the condition of equilibrium of the indenter:

P=2n /O q(p)pdp (6)
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In the present case, the edge of the indenter does not cut into the surface of the half-space. Consequently,
this relation must hold:

q(a) =0 (7)
It is used for the determination of the contact region half-width ¢ and imposes a certain restriction on
function g(r).

It should be noted also that as there is no adhesion between the indenter and the half-space surface, the
relation g(r) = 0 must hold for all »<a for the correct statement of a problem.

3. Reduction of the problem to the dual integral equation

We use static equilibrium equations of the theory of elasticity written in the displacements in the case of
axially symmetrical deformation for the cylindrical coordinate system:

0o, 0
I +a(rfrz) =0
0 01,
a(m,.) —0,+7r 5 = 0
ow Ou
O'Z—ZMg"‘AH, GV—ZME‘FAB (8)

These equations can be presented in the next form, Ter-Mkrtch’ian (1961)

M
M V%xl"‘@—ﬁ +a— a—WJrau +9(A0):0
Oz or

o 1 or oz
00 oM ow 0
M| V? — 2— —+—(A0) =
(V w+az)+ % @z+az( 0)=0 9)

190/ 0 ?
2—__ _ _
v Cror <r6r> +azz

We present radial displacement u, and vertical displacement w, in the Hankel integral form

wrd) == [ UG2R6d
;1 (10)
wi(r,2) = / W2 h(r)dy (i=1,2)

here subscript i = 1 corresponds to the coating and i = 2 corresponds to the substrate (a homogeneous half-
space), J; is the Bessel function of the first order, J; is the Bessel function of the zero order.
Eq. (9) with (10) can be presented in the form

MU +y(M + D)W —y*(2M + A)U; + M'U] + yM'W; =0
(M + AW —y(M + AU — y*MW; + (ZM’ + A’) W —yA'U; =0 (11)
i=1, ze[-H;0; i=2, zé&(—o0;—H)

Here the prime sign indicates the differential with respect to z.
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We introduce the auxiliary functions

Ui (7,2) = —0(0)Ui(7,2)70" (7)

Wi (y,2) = —O0)Wi(y,2)70 ' (y) (i=1,2) (12)
O(0) = 2M(0)(A(0) + M(0))(A(0) +2M(0))~",  M(0) #£0

00 = [ alontmds (13)
alo) = [ Moy (14)

where Q(y) is the Hankel transform of the unknown function ¢(r). To reduce the mixed problem to an
integral equation it is necessary to construct the function #*(y,0).

4. Construction of the integral equation kernel function

Let us consider auxiliary problems with the following boundary conditions (prescribed normal stress):

0, r>a

z2=0, T.=1,=0, 02(r70):{_q<r) 0<r<a (15)

Conditions (4) are satisfied accordingly at z = —H.
We introduce the notation

w=U, wn=U" w=w, wu=w (16)

Here the prime indicates the differentiation with respect to z. We rewrite the system (11) in the matrix form:

dv
& _ AV
dy
0 1 0 0 VM
2 2M+A M M M+A
B 7 y— | "2
A=1" 0 0 0 TR RN A (17)
A 2 oM+
Vo ViV oniea T V4

The general solution of the system (11) with the condition A" = M’ =0 (M # 0) has the form

Us(7,2) = (di + yzdy)e™
VV;(“/,Z) = (dl — Kd2 — “/Zdz)eﬂ (18)
k=3—4v=(A+3M)/(A+ M)

where d;, d, are unknown constants, v is Poisson’s ratio. The solution, ¥(y,z) of (17) is constructed by the
method of simulating functions of Babeshko et al. (1987). According to the general scheme of the method
of simulating functions for the Eq. (17), we extend the solution of the differential equation with the constant
coefficients for z < —H, on the solution of the differential equation with the varying coefficients for
z € [—H; 0] by means of multiplying constants on some unknown functions in the former solution.
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¥(7,2) lzd )ai(7,z ]e” (19)

Here we find vectors 4 (y,z), d»(y,z) from the following Cauchy problems:
dd;
dz

with the initial conditions
a(y,—H) = (1,7,1y),
ay(y,—H) = (2,7 + 7’2, — Kk + 9z, — k) + 7 +%2)

= Ad, —yd;, z€[-H;0](i=1,2) (20)

(1)

z=—H
Vectors of the initial conditions, &, (y, —H) and @,(y, —H ) defined from (19) under the condition that, ¥(y, z)
should be the same as the solution of (18) for all z < —H.
Functions d;(y), dy(y) are determined from the conditions (15)
2

0:(r,0) = —q(r), r<a= Zdi(v) [ = A(0)7a(7,0) + (A4(0) + 2M(0))a}(y,0)] = 6(0)y

(22)
t-(r,0) = 0, w¢2d () [a (7,0) +ya}(7,0)] = 0

Here a*(y,z) denotes the kth component of the vector d@;(y,z) and the sums are taken overi = 1,2 (k = 1-4).
The system (22) is uniquely solvable if its determinant is not equal to zero.
From (5) we finally obtain the expression for the kernel transform of the integral equation, the function
L (y):
2

L*(y) = W (3,0 Z:d, (2,0 (23)
After determining W (y,0), we apply the condition (3) and write it in the next form:
O [0 & =7~ w0, 0<r<a (24)
Using the conditions (13) and (14)
[ atwndo [ w:6.06r1000 41 = 00) - W), 0<r<a (25)

we make the change of variables and note

H _r .0
VHZGa )“:_7 r=-, Q:;

W0 =L =L () = L6, apa) = 1(p) (26)
f(f):é—@, o=%, 0<r<l

Let us rewrite (25)

- | pap /0 mL(g)J()(;f)Jo(’k) ds = O(0)f(7), 0<F<I 27)
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Let us denote ¢/A =a = ya

| @905 | LGmnonton dn = 00 G). 0<r<1 (28)

It should be noted that in the following we consider dimensionless variables and omit tildes under them for
short.

Since the problem formulated for the case of the spherical indenter, y = Sr? is reduced to the following
type of the dual integral equations

JoS T(o)L(Jo)Jo(or)doe = ©(0)f(r), 0<r<1 (29)
T Joocrocdac— , r>1
1
U®=/KMMMMM (30)
0
5. The general properties of the kernel transforms of the integral equation of the problem
When the following conditions are satisfied
r<111no@( z) =z ¢ >0, r(naxo@( z)< ¢ < oo, lim O(z) = const
ze o0 ze o] Z——0Q
A() +M(2) 3D

0 =2MG) om0

it can be demonstrated (Aizikovich and Aleksandrov, 1982), that the kernel transform L(y) has the fol-
lowing properties

L) =pi+py+p* +00%), 7—0 (32)
L) =1+py " +psy > +py” +0(07%), 7> o0 (33)
p =000 (-H) (34)

where p», p3, ps, Ps, P are some constants.

For multilayer media the property of a compliance function similar to (34) was noticed by Privarnikov
(1973).

The property (34) means that the value L(0) for the problem under consideration is independent of the
way in which elastic moduli vary in the half-space from z = 0 to z — —oo and it is determined only by their
values for z = 0 and z — —oo. Graphically it looks as follows: if the set of curves describing the certain laws
of the elastic moduli variation with depth have identical values on the surface of the half-space and as
z — —o0, then the graphs of corresponding transforms L(y) of the problem will issue from a common point
L(0) = p; and converge at one point L(co) = 1.

Taking into consideration that the Lame coefficients A and M (M is sometimes denoted by G and named
the shear modulus) are connected with the Young’s modulus £ and the Poisson’s ratio v by the relations

E Ev 2Gv
M=G=-t 4= _
=y T+ =2) T1=2v
g MGATO Ao G E
A+M 204+ M) =y 2(1—w)
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5.1. The certain auxiliary theorems concerning their analytical approximation
Let us introduce the following definitions:

Definition 1. The function L(y) belongs to the class Ily if it has the form

L) =[P +2) (P +B)" (Bi—B)(Ai—A) #£0, i#k (35)

i=1

Here 4;, B; (i =1,2,...,N) are certain complex constants.

Definition 2. The function L(y) belongs to the class X if it has the form
M -1
Ly(7) =Y _Co(y +Dy)
k=1
Here C; are certain real constants, and B; (k = 1,2,...,M) are certain complex constants.

Definition 3. The function L(y) belongs to the class Sy, if it has the form
L(y) = Ln(y) + Ly (7) (36)

We show that the expressions of the form (36) can approximate L(y) with the properties (32) and (33) using
the following lemma (Akhiezer, 1965; Babeshko, 1972):

Lemma 1. Let an even real function ¢(y) be continuous on the whole real axis and vanish at infinity, then it can
be approximated in C(—o0,00) by a series of functions of the form

Pr = (Vz +Di)71

Theorem 1. Provided that if the function L(y) possesses the properties (32) and (33), it allows approximation by
the expressions of the form (36).

Proof. We select constants 4; and B; (i = 1,2,...,N) in (35) such that

N

I8 =p (37)
i=1

We consider the function
Ls(y) = (L(y) = Ln(7))y™" (38)

On the basis of properties (32) and (33) and condition (37), it follows that Lx(y) satisfies the condition of
Lemma 1. This means that the following representation holds

L= GG +0})" (39)

k=1

Or from the conditions (38) and (39),

L) =Ly +7> GO+ O (40)
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For a numerical realization the improving approximation of L(y) by functions of the class ITy can be
achieved successfully by using the following algorithm.
We map function L(y) by mapping u = /(3> + C?) from interval (0;00) into segment (0;1) (y =

Cy/u(u— 1)_1) Here C'is a positive constant, which should be selected to build the optimal approximation
of function L(y). As initial value C can be taken

|
C =y", where y" such as L(y") = 3 ( max L(y) + min L(y))

7€[0;00) y€[0;00)

Here C is a parameter of mapping, which moves the point y = C of axes (0; co) into the point u = 1/2 of
segment (0; 1).

We approximate the functions /L(y) and /L~!(y) on segment (0;1) by Nth order Bernstein’s poly-
nomials (or by Chebyshev’s nodes), and thus obtain

N

L) = e, (L) = bl (41)

i=0

here a;, b; are coefficients of Bernstein’s polynomials which can be defined as follows. If f(x) is a continuous
function determined on segment (0; 1) then Bernstein’s polynomial By(x) for this function has the form
according to Goncharov (1934),

;]( )Cﬂx’” (1—x)"™"

where Cy are the binomial coefficients.

Then,
(Za* 21) 24 Cz)*N’ /LX/](“/) - (Zb;fyb‘) (% + CZ)fN (42)

where coefficients a;, b} are defined from (41) after the change of variable u = y?/(y* + C?).

LN(V)—\/— (Za 2’)(;@#’) (43)

For each non-homogeneity law, the parameter C is selected separately in order to Ly(y) will approximate
the function L(y) more exactly for given N.

By determining the roots of the numerator and denominator in (43), we find the desired values of 4;,
B; (i=1,2,...,N). Such method permits avoiding the presence of an N-triple root in the denominator of
the approximation found.

5.2. Numerical results

The analysis will be carried out for the typical kinds of the layered and functional graded models.
For such models, we suppose the constant Poisson’s ratio, v = 1/3, and the Young’s modulus varies with
depth in accordance with the relation

_ JE.=Efi(2), —-H<z<0
k@) = {EO, z<-H (44)

i=1,2,...,6
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1
3.5

fi(z) =35 +2.5§, falz) =

1
3.5 H
25 . /znm . [zZm
fi(@) = 1455 sin (ﬁ) folz) = 1 — 2.5sin (ﬁ)

Fig. 2 shows the non-homogeneity laws f;(z'), j=0,1,...,6 described above. Here and below z/ =z/H.
Figs. 3-9 show the graphs of the kernels L(y) (curve ‘1’) of the integral equations constructed numerically
for the appropriate non-homogeneity laws. On the Figs. 3-9, the curves 2’ show the approximation error of
the kernel transforms which corresponds to (40) and equals L(y) — Ly(y), for N = 10.

Below it is an example of the calculated coefficients Ay, By, k = 1,...,N for the non-homogeneity laws
fi(z), f2(2), in the form x + iy, where x is the real part and y is the imaginary one.

Nile) =35, fle) =

[\
(V)]

z

[98)
(9]

Law f;, j=1,2 Coefficients, A4, Values 4, Coefficients By, Values B,
k=1,...,10 k=1,...,10

filz) A, = 0.842 +0.2171 B, = 0.749 + 0.000i
A = 0.842 — 0.2171 B, = 1.231 +0.1111
Ay = 1.329 + 0.068i B; = 1.231 —0.111i
Ay = 1.329 — 0.068i By = 0.851 +0.372i
A5 = 0.992 — 0.611i Bs = 0.851 — 0.372i
Ag = 0.992 + 0.6111 Bs = 2.482 + 0.000i
A7 = 1.673 + 1.1031 B; = 1.116 + 0.8311
Ag = 1.673 — 1.103i Bg = 1.116 — 0.831i
Ay = 2.395 + 0.474i By = 2.102 + 0.742i
Ay = 2.395 — 0.474i By = 2.102 — 0.742i

f(2) 4, = 0.642 + 0.0001 B, = 2.310 + 0.000i
A, = 1.244 + 0.0001 B, = 1.069 — 0.544i
Ay = 1.196 + 0.7001 B; = 1.069 + 0.5441
Ay = 1.196 — 0.700i By = 1.330 + 0.0001
As = 0.937 — 0.381i Bs = 0.832 + 0.3311
Ag = 0.937 + 0.3811 Bs = 0.832 — 0.331i
A7 = 2.205 + 0.4041 B; = 1.793 + 0.528i1
Ag = 2.205 — 0.404i Bg = 1.793 — 0.528i
Ay = 1.666 + 0.4751 By = 1.683 + 0.8101
Ay = 1.666 — 0.475i By = 1.683 — 0.8101

It should be noted that according to Aizikovich and Aleksandrov (1982) the exponential decrease with

respect to y for the layered coatings is characteristic of the kernel transform

L(y) =1+l 1 O(e M),

where 4, is the thickness of the upper layer. At the same time, the following type of behaviour at infinity is

characteristic of blended coatings

Ly)=14+Cy ' +Cy 2+ 07,

where C;, C, are constants. Hence, the kernel transform for the layered coating (when y — oo) is ap-

Y 0

V=00

proaching to 1 more rapidly than in the case of the functional graded coating.



S.M. Aizikovich et al. | International Journal of Solids and Structures 39 (2002) 2745-2772 2755

0.0 1.0 3

LG

10 35_{(2') Egg 10_/2'(1')

082 L)

7!

0.0 0.5 1.0

Fig. 2. Non-homogeneity laws describing considered variations of elastic modulus with depth, f;(z'), i = 0-6.

L0

1.0

1

<
0 5 1o

Fig. 3. Kernel transform L(y) of integral equation for non-homogeneity law fo(2’).

0.0

It should be noted that the kernel transform for the two-layered law of non-homogeneity is approxi-
mated more exactly by the analytical expression (35).
6. The asymptotic solution of an integral equation of the problem
6.1. Existence and uniqueness of the solution of the integral equation of the problem for L(y) of class Tl

Eq. (29) can be written in terms of the operator for L(y) of class Ily in the form
Iyt =f
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Fig. 4. Kernel transform L(y) of integral equation for non-homogeneity law f;(z’).
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Fig. 5. Kernel transform L(y) of integral equation for non-homogeneity law f>(z’).
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Fig. 6. Kernel transform L(y) of integral equation for non-homogeneity law f3(z').
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1.0, L0y)

0.5 1
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50 100 15D 200

0.0

Fig. 7. Kernel transform L(y) of integral equation for non-homogeneity law f4(z’).

Liy)

VU 10 0

Fig. 8. Kernel transform L(y) of integral equation for non-homogeneity law f5(z’).

0.0 5 10 15 20 y

=

Fig. 9. Kernel transform L(y) of integral equation for non-homogeneity law f5(z').
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Lemma 2. Eq. (29) is solvable uniquely for L(y) of class Iy in the class of functions C(—1,1), hence, the
estimate

e vy < mT) [ fllee-11ys - m(Ty) = const (45)

holds in C(—1,1). Below, m(A) shall denote a certain constant dependent on the specific form of the functions
belonging to the class A.

Using the operators

Uio(r) dC/ \/— dr;  (UiJy(ar) = cosal)
Uso(r) / m dr;  (UsJy(or) = o' cosal)

we represent (29) in the form

Jo T(a)L(2a) cosalda = ©(0)g({), 0<(<]1 46
{fo T(a)cosalda =0, {>1 (46)
g() =Uif ()
In our case
¢ W(ra)] ar’] a,
Ul[é— - }Ul[é—ﬁ]é—ﬁl (47)
We use the definition
O0)() =ha(0), @) =0 +%
From (47), ky = —(a/R)©(0), ky = 56(0).
In the case when
2 N 2
LUo) = Ly(s) = B ©) it (48)

P2(2w?) 11 P2 + B

by using the method developed by Aleksandrov (1973), we have obtained a solution of the problem. Ly has
the representation:

N
o) =1+ B2 (o2 +BAY)
here s, = —L% (iB:~")(1 — A2B;?). We use the definitions
N «2 2 2
; + 4
LK (o) = B —
wla) = 1_1[k J*o? + B?

where H;V:Lk means that the mth factor is absent in this product.
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Let us introduce the function

1 o0
p(l)=— / T (a)cosalda (49)
k] 0
Then, using the operational calculus methods (Lure, 1955), (46) is represented in the form
d2
Pi(=D)p({) = P(=D)&1(0), = @ (e [0;1] (50)

with polynomials P, and P, defined in Eq. (48).
The solution of differential equation (50) can be written in the form

¢ + +2A Z 1 (51)

where coefficients C;, i = 1,..., N are unknown and will be defined later from the condition that this so-
lution should satisfy identically the integral equation (46).
If we use an inverse Fourier transform in (49), then we obtain

2 coS o — sin ky sin
T(a)zgkl{LNl(O)PW (1+k +2SI> a“]

() = XN:C,» cosh (4;27'0) + Ly'(0)

i=1

N 4,27 " sinh (4,471 cos o + asin o cosh (4;47!
+ Z G ( ) -2 ( ) (52)
P o2 + A2
where
N
=2 (47 -
i=1
According to (30) we obtain an expression for stresses, if we use the Hankel transform
tr) = / T(ot)Jo(or) dot (53)
0

Substituting (52) in (53), we obtain

ki V1-1r?
N )
+Zc<cosh(z‘lm e / sm\l;;liﬂf dC)}, 0<r<l (54)
pum —r

We can find a constant &, from the condition ¢(1) = 0, which eliminates the diverging rams in Eq. (54):

(r) = %kl{LN‘ 0) [ NV (1 L 251> #]

N
+ Z Cicosh (4,271) =0 (55)

i=1

LNI(())[—(SRJr 1 +ZSI:|

Coefficients C; are found from the condition that if we substitute 7'(«) from (52) in (46) then the last one
must be identically satisfied for L(A«) in the form (48).
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oo N Ssz 72
/ Z cosalde =k (*+k, 0<(<I1 (56)
0 £~ o2 4 B2)?
From (56) we obtain the linear algebraic system of equations for the coefficients C;
N 4,2 sinh (4,271 coso + By A cosh (4,47! - OR B b+ 1
2.C W Jeosar Bl oMW ) | pnyopma) Y - | B!
) Bl —A; A BiA
N
+22) (472 - B }:0, 0<r<l1 (57)
=1

The system (57) is solvable uniquely if 4;, B satisfy conditions (35). The assertion of the Lemma 2 and the
estimate (45) results from here. [

In accordance with (55), the expression for the normal contact stresses is represented in the form
2 h (4;4~
(1) == 6(0)% { \/l—rz—f—ZCAl / sin C) dC}, 0<r<1 (58)

The acting force P is defined from the equilibrium condition of the indenter

1
P= 2na2/ t(r)rdr
0

Hence

3 N
P= 4% 6(0 ){ %L;l (0)+ > Cidii™"(— cosh (4;47") + 4,47 sinh (4,27")) } (59)
i=1

Theorem 2. If the conditions (35) hold and the non-homogeneity law is such that OP /Qa, being the function of
A;, C; satisfies

P
a—>0, P#0,a#0 (60)
Oa
then the operator Iy is reversible and the following estimate holds
1) e <[ 1/ e (61)

Let us consider an example. For N = 1 constants C; and can be defined from the next linear algebraic
system of equations

2
(ﬂ) { _5—R+ 1+24%(4] - B%)} + Cycosh(4,27') =0

A4,
A] Sll’lh(A]j. )+B1 COSh(A]/lil)
C e
B OR By +1
A;{+1+2 |:IBZ+(A1_231_2):|}0, 0<r«l1
1 1
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2 B? !sinh(4,27"
40:—@@%{%ﬁV1—ﬂ+Cddl ﬂb%gﬁga}70<r<1
T 1 r C—}"

6.2. Existence and uniqueness of the solution of the problem for L(y) of class Sy u

The Eq. (29) can be written in the operator form for L(y) of class Sy, in the form

Definition 4. We shall say that function f'(x), absolutely integrated on a segment [0; 1], satisfies condition
M, if a Fourier—Bessel expansion holds (M/‘? is a certain constant), Koshliakov et al., 1962

ZCIJO,U,, Z|a,u,,|<M0<oo

Here py,pt, ..., 1,... are positive roots of Bessel’s function Jy(x) indexed in increasing order, o,
n=1,2,... are coefficients of a Fourier—Bessel series expansion of f(x).

2 1
a, :m/o tf ()Jo(uyt) dt

Lemma 3. Operator I1,'S,, of the problem is a compression operator in space C(—1,1) when the condition
(35) is satisfied, if 0 < A < 2" or A > 2°, where )* and )° are certain fixed values of .

We consider the operator X,,(¢). Without loss of generality, we set M = 1 and thus obtaining

() = / {(p)pdp / T ap)da (63)

o2+ d2?

where d,, d, are the certain constants.
We represent X (¢) as the Fourier—Bessel series

= > adolmr)
k=1
Coeflicients a; are found from the following formula
P U [ / ) o) dp — e ()Koldoi ) / (p)lo(pdsi ) dp (64)
CT R )G + 327 Lo ne L

where K, is the McDonald’s function of the zero order, /; is the Bessel function of imaginary argument of
the zero order.

Using the asymptotic estimates of cylindrical functions of an imaginary argument (Gradshtein and
Ryzhik, 1965):

Ko(z) ~ —1Inz Iy(z)' ~ 1 forz— 0

Ko(z) ~ —e*\/n/22,1y(z) ~ & /V2nz for z — oo
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we obtain the following estimate from (64)

" 0
1?[5“’1"21 c12|ak\<m° L—0(2< 1)
(65)
g[éa)l(p:] C22|ak\</L M*, A — oo(A> 1Y)

here C;, C, are the certain constants and constants M° and M* are independent of /.

Hence, analogously to the estimates of Lemma 2, 4 can be selected so that operator IT,'E,, will be a
compression operator under the conditions of Lemma 2, Kantorovich and Akilov (1982). On this basis, by
applying the Banach principle of compressed mappings to the Eq. (62)

t+ I By =TI f (66)

we obtain the proof of the existence and uniqueness of the solution of (29) under the constraints imposed by
Lemma 2. O

That means the following estimates take place.

Theorem 3. The Eq. (29) of the problem is solvable uniquely in the space C(—1,1) for L(y) of the class Sy, if
1 (r) is even function and satisfies the condition My for 0 < i < i* or > 1°, where 2* and 2° are certain fixed
values of 1. Hence, the following estimate holds:

1)l ¢-1,1) < m(Ty, Ear )M,

Finally, we formulate the following theorem:

Theorem 4. The Eq. (29) of the problem is solvable uniquely in the space C(—1,1) for L(y) of the class Sy . if
£ (r) is even function and satisfies the condition My for 0 < A < A* or J. > J°, where A and )° are the certain
fixed values of A, hence, the following estimate holds:

1) | e-ra) < m(TTy, B )M} (67)

The proof of Theorem 4 follows from the assertions in Theorem 2 and 3 and is analogous to the one carried
out in Babeshko (1971, 1972).

6.3. The stiffness concept of the depthwise non-homogeneous material

As a result of the penetration of the indenter into non-homogeneous material we can obtain the relation
between the impressing force and the displacement of the indenter. Directly using this relation is not
convenient for the determination of coating non-homogeneity. We define an expression which is referred to
as the stiffness of the material

_3p 1
! ay 1—»?
where « is the contact zone radius, y is the displacement of the indenter, v is the Poisson’s ratio. For the

homogeneous material the stiffness is a constant equivalent to the shear modulus of the foundation
(Johnson, 1985). For the non-homogeneous material, S(a) is a function depending on the contact zone size.
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6.4. Numerical results

Fig. 10 shows the graphs of the quantity go(r), which is the distribution of the contact stresses under a
non-deformable spherical indenter for a homogeneous half-space with E(z) = Ej.

Figs. 11-16 show graphs of the ratio ®;(r) = ¢;(r)g, "' (r) which characterizes the distribution of normal
contact stresses ¢;(r) under a non-deformable spherical indenter, for the non-homogeneity of type
fi(z) (i=1,...,6) from the relation (44). The values of ¢,(») were found by the formula (58) with N = 10.
The ratio of g;(r) to go(r) is considered for equal values of the contact zones for a spherical indenter im-
pressed into a non-homogeneous and, respectively, into a homogeneous half-space the elasticity modulus of
which is equal to the elasticity modulus of the substrate.

0.0 gt (2 ')

=-1.0

_0. 7 1 A= ’/Qﬂ-f‘/ /_///)/

~0.4

———/ ')/‘
0 0.5 7.0

Fig. 10. Distribution of contract stresses under a non-deformable spherical indenter for a homogeneous half-space.

-0.6

4.0 ;

3.0 1

201 ___’_,.1;1/2//;

A=1/8 >
1.0 0 0.5 7.0
Fig. 11. Graph of the ratio ®,(r) = q,(r)/qo(r) which characterizes the distribution of normal contact stresses ¢;(r) under a non-

deformable spherical indenter.
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0.7 |—————a=1,4 ~

0.5 —

Tr
0.2 % 0.5 7.0

Fig. 12. Graph of the ratio ®,(r) = ¢2(r)/qo(r) which characterizes the distribution of normal contact stresses ¢»(r) under a non-
deformable spherical indenter.

3.9 |—a=18
A= 4 —_—
_-—-'-"_—"..
2.6 | *=FT
Y -
I—
L =1 ,
1.5 1=1/2//,//
—A=1/8
0.5 !
2D 0.5 7.0

Fig. 13. Graph of the ratio ®;(r) = ¢3(r)/qo(r) which characterizes the distribution of normal contact stresses g;() under a non-
deformable spherical indenter.

Fig. 17 shows graphs of S(17')/S, the ratio of the stiffiness of the non-homogeneous coatings S to the
stiffness of the substrate—a homogeneous half-space S, for the five cases of the non-homogeneity laws
mentioned above f;(), (i =0,1,2,3,4). To make the graph more descriptive we present them using log-
arithmic scale. The curve numbers corresponds to the variation laws of the elasticity modulus. Fig. 17
shows that using the results of non-destructive indentation experiments we can evaluate the variation of the
elasticity modulus with the depth. Moreover, it shows that this kind of test gives the possibility to dis-
tinguish changes of surface layer properties not only in terms of more soft or more hard, but also to de-
termine the variation of the coatings elastic properties with the depth (blended or layered), provided that
the layer size is known.

In Fig. 18, curves 0, 5 and 6 show the ratio of the stiffness of non-homogeneous coatings, S, to the
stiffness of substrate, Sy, for fi(z'), (i =0,5,6) which characterizes the non-homogeneity laws described
above.



S.M. Aizikovich et al. | International Journal of Solids and Structures 39 (2002) 2745-2772 2765

nn G210

0.5 %2H\\\Q
—A=4
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A=16 ’

2.2 0.5 7.0

Fig. 14. Graph of the ratio ®4(r) = q4(r)/qo(r) which characterizes the distribution of normal contact stresses g4(r) under a non-
deformable spherical indenter.

(gl Lo yALY,

0 0.5 7.0

Fig. 15. Graph of the ratio ®s(r) = ¢s(r)/qo(r) which characterizes the distribution of normal contact stresses ¢s(r) under a non-
deformable spherical indenter.

The curve numbers correspond to the variation laws of elastic modulus. It is obvious from Figs. 17 and
18 that the middle region of the stiffness change graph is the most informative one (1/4H < a <4H).

7. A posteriori accuracy evaluation of the bilateral asymptotically exact method of the solution of integral
equations

It was shown above that the problem of determining contact stress distribution arising from indentation
of a spherical indenter into the depthwise non-homogeneous layer coupled with a homogeneous half-space
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7.8

1.5

7.8

1.0

Fig. 16. Graph of the ratio ®4(r) = ¢6(r)/qo(r) which characterizes the distribution of normal contact stresses ¢s(r) under a non-
deformable spherical indenter.

Fig. 17. Graph of the ratio S(17")/S, for the f;(z'), i = 0-4.

is reduced to the solution of the dual integral equation in the form (29) with the additional condition of
indenter equilibrium

1
P= 27!/0 q(p)pdp

Constructing the approximate bilateral asymptotically exact solution of the problem, we substituted the
kernel of (29) by its approximation in form (35).

After determining the contact stresses gy(p) distribution, we can find the integral characteristic of the
displacement error under the indenter
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Fig. 18. Graph of the ratio S(27')/S, for the f;(z), i = 0, 5, 6.

C 1 1 10

An(r) = / ax(p)pdp / " (L) — Ly () Wolop)o(or) dr (68)

which is obtained as a result of the substitution of the kernel transform by its approximation. The function
f(r) from the right part of (29) corresponds to surface displacement values of the non-homogeneous half-
space under the spherical indenter and so the physical sense of the error is the relative displacement. The
integral expression in Eq. (68) is bounded, hence, we can easily find Ay(r) with the help of quadrature
formulas (Gauss formula, for example). The Ay (r) value gives the absolute error for the indenter dis-
placement determination. We obtain the relative error rate as the ratio:

AN (l")
w(r)

&(r) = 100 x

where w(r) is the surface displacement of a half-space under the indenter.

7.1. The numerical investigations of the solution error depending on A (A — 0,4 — 00)

The results of the calculations of the value ¢(r) for different non-homogeneity laws are shown on Figs.
19-25. In the top part of the figures the relation of the elasticity modulus change with layer depth is
graphed. Graphs 19-25 reveal the correlation of the errors and the different non-homogeneity laws.

When we construct the approximations Ly(y) we can vary both the number of terms in the product (36)
and the mapping parameter. This gives us the opportunity of controlling the approximation accuracy
within certain limits. Thus, selecting the mapping parameter value as equal to the abscissa of the maximum
error (L(y) — Ly(y))/L(y), we can reduce its value to some value linked with the elastic modulus change law
(usually these values are achieved for a few points y).

Fig. 26 shows the integral error of the displacement value w(4)

o(l) = /0 (e ) dr

The figure reveals that the theoretically determined bilateral asymptotic properties of the solution
(A — 0,24 — o0) are confirmed by numerical experiments.



2768 S. M. Aizikovich et al. | International Journal of Solids and Structures 39 (2002) 2745-2772

=
0.00  —
A=16- — Tm e T Tt
. P .
—0.01|-" ;=8 e
- N

A=T/4|  T r-/}\‘_: 1/‘2,—-;?7’:,-'

~0.02| =2 &

—-0.053

-1.01

-2.0 1

-3.0

/}L ¥
0 0.5 1.0

Fig. 20. Relative error ¢(r) of surface displacement determination for law of non-homogeneity fi(z') = 3.5.

8. Conclusion

In this paper the Hertzian contact problem for both layered and functional graded half-space is studied
analytically. We presumed that the variation with depth of the Lame coefficients in the half-space has
general nature (arbitrary continuous or piecewise continuous functions of depth). We assumed elasticity
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Fig. 21. Relative error ¢(r) of surface displacement determination for law of non-homogeneity f>(z') = 1/3.5.

0 0.5 7.0

Fig. 22. Relative error &(r) of surface displacement determination for linear decreasing law of non-homogeneity.

properties of a half-space to become stable with depth, i.e., it was imagined as a non-homogeneous layer
which is completely coupled with a homogeneous half-space. For the first stage we used the method of
integral transforms for the solution of this problem. The two-point boundary problem for the system of
ordinary differential equations with variable coefficients was solved using an effective special scheme in
order to construct the transform of the integral equation kernel.

The numerically constructed kernel transform was approximated by an analytical expression of a special
type, so that it has become possible to obtain a closed analytical solution of the approximate integral
equation. The resulting approximate solution of the problem was shown to be the bilateral asymptotically
exact one for small and large values of a characteristic geometric parameter.

Error evaluations for constructed approximate analytical solutions of the problem were carried out
theoretically. The method can be easily implemented as the set of programs, which are PC compatible.
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r
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Fig. 23. Relative error ¢(r) of surface displacement determination for linear increasing law of non-homogeneity.
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& _000:;;,"0]2(2')
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Fig. 25. Relative error ¢(r) of surface displacement determination for sinusoidal (convex) law of non-homogeneity.
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Fig. 26. Integral error of the displacement value (1) determination.
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